PHYSICAL REVIEW E VOLUME 57, NUMBER 6 JUNE 1998

Ray propagation in nematic droplets
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We present a model for the propagation of optical beams in a nematic droplet. For a low intensity electro-
magnetic field, we first derive an analytical asymptotic expression for the configuration of a nematic droplet
that satisfies hard-anchoring, bipolar boundary conditions. Then, from Maxwell's equation, we find the corre-
sponding eikonal equation valid in the limit of geometrical optics. From the latter equation we find the ray
trajectories for the radial and bipolar configurations for various sets of initially parallel rays, and show how
they are deflected by a nematic droplet. We also find the presence of caustics and return points, whose
positions depend on the initial conditions. Finally, we summarize our re$8{t963-651X98)15605-2

PACS numbes): 42.70.Df, 78.20.Fm, 42.79.Kr

I. INTRODUCTION changes of the refraction index induced by the nematic con-
figuration are completely neglected. These refractive effects
Light propagation in birefringent inhomogeneous media isare expected to be important in birefringent and inhomoge-
a difficult problem which has been extensively studied in theneous media like liquid crystals even for moderate dielectric
last years for planar geometries. In fact, for the case of @nisotropy values, and are able to curve the trajectory of light
plane wave and layered media, different procedures haveeams as well as induce local changes of phase instead of
been used for solving this problem. One of the most widelyglobal changes, which can develop in richer diffraction pat-
utilized methods in liquid crystals is that of Barremaflg  terns.
4x 4 matrix formalism which was shown to be equivalentto  The purpose of this paper is to study this refractive effect
Maxwell’'s equation for linear propagation. Some other ap-by analyzing the dynamics of transverse modes which propa-
proaches based on the well known geometrical optics apgate in a nematic droplet, in the limit of geometrical optics.
proximation have been also applied to describe beam propAdore specifically, we shall calculate and analyze the ray tra-
gation in planar geometrief2,3]. Electromagnetic modes jectories for both the radial and bipolar configurations, as
have been considered for certain cylindrical geometries byvell as some other physical parameters involved.
using either numerical procedurgd or the so called WKB To this end this paper is organized as follows. In Sec. II
approximation5]. we deduce, from Frank’s energy density, an asymptotic ana-
The development of polymer-dispersed liquid crystalslytical expression for the bipolar configuration. In Sec. Ill we
(PDLC’s), which are dispersions of liquid crystal rich drop- derive the eikonal equation in a nematic droplet from Max-
lets in a polymer matrix6], has brought about a great deal of well's equation, in the limit of geometrical optics. In Sec. IV
interest in the study of light propagation in spherical geom-We calculate the ray trajectories for the radial and bipolar
etries. The size of spherical droplets in these materials i§onfigurations by using analytical and numerical procedures.
usually uniform but can vary between 0.1 and 4®. The Finally, Sec. V is devoted to summarizing our work and
nematic configuration within droplets depends on surface arPresenting our results.
choring and elastic constants, and is responsible for the re-
fractive and birefringent properties of the droplets. It should Il. BIPOLAR CONFIGURATION
be mentioned that the electro-optic properties of PDLC's are
among the reasons for their potential applicability in differ-
ent deviceg7,8].

We consider a spherical nematic droplet of radRs
which satisfies the hard-anchoring bipolar boundary condi-

. , tions[11] (see Fig. L We will consider a coordinate system
There have been some pioneering wdik4.0] devoted to Ao ;
analyzing light scattering from a nematic droplet. Two whose origin is at the center of the droplet, and for which the

complementary physical limits were considered in thesé)IpOIar axis 1s pargllel to th? axis. ]’hen, ito is th_e pplar
works, namely, the Rayleigh-Gans approximation and th ngle of the spherical coordlnat'e's amis the nematic direc-
anomalous-diffraction approach, which assume, respectivel fr: the bipolar boundary condition is given fr =R, 6)
a much smaller and much larger droplet radius than the_

e,, whereg, is the unit vector in the direction of increas-
wavelength of the light; also, both of these suppose a small'd &- One may express the director in terms of the angle
dielectric anisotropy. For the latter work, these assumption

gneasured frong, and contained in the plane defined by this
allowed the author to consider the light as a ray which doeé-’ector "?mdé_f ,hwh_ereer is the unit vector in the direction of
not change its direction but only suffers a change of phasépcreasmgr, that s,

that is to say, the refractive effects which stem from the local A=sin ¢(r,0)&,+cos ¥(r, 0)&,, 2.9
where we have used the azimuth symmetry of this nematic
*On leave from Instituto de 'Bica, UNAM, Mexico, Distrito Fed-  configuration. Note that the boundary condition given by Eg.
eral, Mexico. (2.1) imposes ony the conditiony(r =R, §) =0.
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FIG. 1. Diagram of a nematic droplet where the nematic director
and the transverse magnetic modes are shown.
A nematic liquid crystal confined to a small spherical vol- 14

ume, where the surface-to-volume ratio is relatively high,
exhibits a specific nematic configuration resulting from the FIG. 2. Numerical solution of Eq(2) satisfying boundary con-
elastic forces. For droplets whose raBiiare larger tharR ditions «(r=R=50um)=0 and x(r=0)=—1«(r) is a dimen-
>100 nm, surface-induced changes in the nematic order paionless(dmls) function defined in Sec. Il.

rameter can be neglectétl?], and thus the nematic director

n can be determined by minimizing Frank’s free energy, thatlong thez axis (#=0,7) and on the equator planed (

in the equal elastic constant approximatiéeeK;=K5 can = x/2), which is the expected behavior for this configura-
be written[13] tion. Second, it can be shown that this expression describes
asymptotically the solution of Eq2.3) near its poles. Sub-

aP\2 [ ay\? titution of tany= «(t)cot @ into Eq. (2.3), yield
f:(RK/z)fdaou) dt sin gt (a—‘f + a—'g L3sipy  Sowtion of tany «(tjcotéinto Eq. (2.3), yields
\Y
2 (dK>2 2 0+ 2k(1— ?)
9 9 2 —ZKk|—7| CO K(l—«k
+1+cof @ cog y+sin 21#—(!/—2(5"12 Y+1) o d_K+d_K+ dt —2xk—2=0
ot a0 dtz ' dt Sir? 6+ k2 co< 0 '
(2.9

J
+2—l// cot 6 cos i+ 2 sin 24 cot 4
at In general, Eq(2.4) is not consistent becausedepends only
P } ont; hence we integrate E.4) with respect tod from 0 to

—sin 2 cot 4 70 (2.2  m; this leads to

2
whereV is the droplet volume ant=In(r/R). Thus the con- (d_K

2
figuration equation is obtained by calculating the variational 2 d_"+2 d_"+2 2 —2(k+1)(2— K)=0
derivative of Eq.(2.2) with respect toy, leading to Carr T T 1w (et 1)(2=)=0.
(2.9
Py Py Iy ay sin 2
Ed + 962 + it +cot 6 2g SN 2+ 2SI 6 By using the shooting method, we numerically calculate the
solution of Eq.(2.5), for a 50um droplet, that satisfies the
—cot 6 cos 2y—cot §=0. (2.3 corresponding boundary conditions; this is shown in Fig. 2.

In order to provide a simple analytical expression for the
Now we look for a solution for Eq(2.3) of the form tanyy  configuration, that will be useful in the following sections,
=k(t)cot 6, where «(t) is an arbitrary function of which  we shall approximatec(r)~r/R—1. Hencen can be ob-
satisfies the boundary conditions(t=1)=0 and «(t= tained by inserting tag=(r/R—1)coté into Eq. (2.1); we
—x)=—1. Here the first condition comes from(r=R) arrive at
=0, and the second one guarantees the continuity atfthe
c,tente:r. The reasons for choosing this kindAo_f solutior_w are _ zp8,+(p*- \/zszz)ﬁ
first, n(6=0,7,7/2)= —k for any «(t), wherek is the unit n= ,
vector along the axis. This means thai is parallel to—k \/pz( VZ2+ p?—1)2+ 72

(2.6
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whereE(r, 6,ky), E(r,0,ko), andH 4(r,6,ko) are the T™M
amplitudesk,= w/c is the free space wave number, ands
an integer number. Here is the frequency of the field aral
the speed of light in vacuum.

Using Maxwell's equations without sources to describe

0.8

04 the optical field within the liquid crystal, we arrived at the
= following general set of equations for the amplitudes of the
§ 0.0- TM modes k=r/R):
< 14 T e 0 O

o4 X ax | & ax XHo) 57 5 (SN 0Hy)

1 90 J H €pp J . oH
: +—=— — (XHy)+ =—— — (sin
08 X2 36 | € ax XHo) T G 5 (8 ¢
| e +e€,k5R?H,,=0, (3.3
038 0.4 0.0 0.4 0.8
oo | ( o 7 e — ( >]
Ei=————=-{=—> == (sinfH,) + €4 — (XHy),
FIG. 3. Director lines for various equally separated initial con- €, €KoRX [ sin 6 36 O
dition at the equator plane. (3.4
_ _ . . . . | EI’H J A d
wherez=r cosé and p=r sin é are the cylindrical coordi- Ey=—— 51 =7 == (SinOH )+ €, — (XHy) |,
nates, an@, is the unit vector in the increasing direction of €, €koRx [ sin 6 96 IxX
p. To show this nematic’s configuration graphically, we de- 3.9

fine the director lines in the following way: and wheree; ande, denote, respectively, the dielectric con-

stants parallel and perpendicular to the long axis of the mol-

dp n, zp ecules.e,= €,— €, is the dielectric anisotropy of the nematic
dz N, g Nz (27 and the components of the dielectric tensef;=e, &;;

+ €,n;n; are explicit functions o andx, namely,e,, =€,
+ €, SIMP Y(X,0); €pp=€, + €, COS Y(X,0); and e, ,=ey

Thusn is parallel to the curve which passes through the point= e, Sin (X, 6)cos (X, 6).
wheren is to be calculated. Figure 3 plots some of the curves We can approximate Eqé3.3—(3.5) by supposing a low
given by Eq.(2.7), which are drawn equally separated at theintensity incident beam whose optical wavelength is much
equator planez=0). smaller than the droplet radius, so thet;R<1. The former
condition guarantees that is not distorted by the electro-
magnetic field, and the latter condition defines the well
known limit of geometrical optic§14]. Following the usual

We shall restrict our analysis to consider electromagneti®rocedure in geometrical opti¢S], we assume the follow-
ing form for the TM mode components:

Ill. GEOMETRICAL OPTICS

fields, £ and’H whosez component of angular momentum
|,=iAd/d¢ vanishes, that islz§= I 25= 0. This means physi- H4(X,0,k) =Hgy exdi(keRWMX,0)—ot)]  (3.6)
cally that the wave vector associated with these fields lies in

the p|ane generated @ and é(}_ The propagation of these Here W(X,H) is the characteristic function of Hamilton,
waves within a nematic droplet can be described in terms ofhich is equal to the difference in optical paths of a ray
the representation provided by the corresponding TM and Tiropagating between two fixed point in the droplet. The am-
modes, which have the componefts, & , and&, and€,,  PlitudesHo, andEo; are general complex functions of the
H, , and’H,, respectively. Notice that for both the radial and POsition. Substitution of E¢(3.6) into Eq. (3.3), by keeping
bipolar configuration, which can be expressed by @g1),  terms up to order zero in B4R, leads to

the TE modes are not coupled ddecause their only electric 5 5
component is parallel t&,. As a result, they cannot induce M) PNl (M) (ﬂ) €00 M) e e

a torque om. Thus in the rest of this section we shall ignore IX X\ d6 )\ dx SR o
them. The monochromatic TM modes for our system are 3.7
given by

rr

This equation is the so-called eikonal or Hamilton-Jacobi

_ equation.
Hy(r,0,t)=e"“"H 4(r, 6,ko) (3.1

IV. RAY TRAJECTORIES

and We will study the ray propagation for the radial and the

_ bipolar nematic droplet configurations by using the TM
& Ar,0,t)=€"“'E, ,(r,0,ko), 3.2 mode formalism developed in Sec. lll.



A. Radial configuration

The radial configuration can be represented by(Ed) if
taking = 7/2; hence for this configuration E¢3.7) does
not depend explicitly ord, so that we can separate this vari-
able by using the canonical transformatidf= P(x) —q,6,
whereP(x) is a function which depends only o andqg is
the angular momentum which is conserved. TWss given

by
q_g) } 1/2
€
o

12 %
arcco
x\e

where Py is an integration constant. According to the
Hamilton-Jacobi theory, the ray trajectory is given by
=dJW(X, 6,d0)/ 0o, Where vy is the variable conjugated to
0o, Which is invariant in time; that is, an initial condition or
constant of motion. It leads to

QOR/\/ZII
r= .
cog Ve /e (6—y)]

Now, bothqgy and y can be expressed in terms of the initial
0, and incidencexy angles at the sphere border= R=50
um (see Fig. L We use the following general relation,
which can be derived from the coordinate transformation
=r cosf andp=r sin @

W= —qo0+| €, | x°—

€

+dJo + Py, 4.0

€

4.2

do .
cosf—r —sin @
dr
tana= ,

) de
sin 6+r — cosé
dr

4.3

where tanyy=dzdp. Then, substituting from Eq.(4.2) into
Eq. (4.3 by takingx=1, leads to

Ve, cog ag+ o) wa
do= .
° \/(EL/EH)Sinz(ao‘F 00)+CO§(00+Q’0)
and
€ 1/2 %qol
=0p— | — —]. 4.
=0, (f| arcco \/:” (4.5

Some optical quantities can be calculated from @&cwR).
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FIG. 4. Ray trajectories, for the radial configuration, starting
from the right, initially parallel to each other and with equally sepa-
rated values of,, namely, 6= = 7/8, = /4, ... and= 7/2; for
the incident anglaxr,=0. We use a typical nematic cyanobiphenil
for which e, =2.25 ande;=2.89.

ray propagates in a straight line at normal incidence &Wd
tends to 0 wherB— 7/2, as should be expected.

The form of the trajectories can be inferred from Eq.
(4.2). Notice that all the trajectories are symmetric with re-
spect to the anglg, thus the angl®@, over the sphere surface
at which the ray comes out is given by the conditig&yx- vy
=—(6p— ), and thends— 6y=2(y— 6y). In fact, from Eq.
(4.5, we note that the maximum and minimum angles al-
lowed for 6 are 4= e, /¢;m/2. Thus, besides the normal
incident ray whose ray trajectory is a straight line that
crosses the center, as was shown above, every ray cannot
reach a dark zone delimited by the angi€l— e, /¢))
which lies behind the droplet. That is to say, there is a defo-
cusing effect that makes the droplet behave as a divergent
lens.

In Fig. 4, we plot rays which start from the right, are
initially parallel to each other, and are equally separated over
the sphere border; for the incident angleg=0. Here we
are considering a 5@sm nematic droplet for whiche,
=2.25 ande;=2.89. This figure shows how the rays diverge
from the equator plane in such a way that the rays nearer to
the equator are bent more than the rays which lie further
from it. The same behavior is expected for any valuexof
because of the symmetry of the configuration. In Fig. 5, we
plot a set of rays with the sam# and various values of;
this graph shows clearly the presence of the dark zone in-

First, the return point of the trajectory is obtained by settingduced by the droplet.

0=y, becauser reaches its minimum value,=qq(6g
+a0)R/\/Z. Note thatr,=0 at normal incidenceB= 6,
+ap—m/2=0, andr,—1 when 8==/2 tends tow/2, as
should be expected. Second, sivgas itself the optical path

We should mention that if we want to follow a plane
wave which comes from outside the droplet, we have to take
into account the change of direction of the rays given by the
Snell law at the interface droplet host. Roughly speaking, the

of the trajectory, we directly obtain the change of phase okffect of this border refraction is to add an initial divergent

the ray Af=[W(r=R)—W(r=r,)]/2 in crossing the
whole droplet, by substituting from Eq.(4.2) into Eq.(4.1);
we arrive at Af=(\e, /m)cospBl\cos B+(e /e )sir? B.
Note that for8=0, AW has its maximum value, and this is

deflection angle to each ray, so that the dark zone mentioned
above still would be present, but enhanced because the rays
are to be even more scattered.

It is important to remark that because of the symmetry of

the same as in an isotropic medium, which means that ththe configuration, for any incident ray, it is always possible
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" FIG. 5.FRa)‘/1 trr;uegtorl?s, f(:r: the same_ctonflgu_ratlon and” sub- FIG. 6. Ray trajectories for the bipolar configuration starting
stance as g. 4, starting from e_same+pa951 Or_‘\fal‘IOUS equally  fom the right, initially parallel to each other and with equally sepa-
separated values afy, namely,a=, 0, + /20, * /10, ..., and rated values ob,, namely, 6,= = 7/8, * /4, ..., and= 7/2; for

+97/20. - = .
the incident anglexy=0. We use the same substance values as Fig.

to find a reference coordinate for which the&component of

the angular momenturﬁ=iﬁd/d¢ vanishes. In this sense, 40

the results for this configuration are quite general. P — L (4.10

B. Bipolar configuration

To express), the initial condition forq, in terms ofay and

Due to the fact that the dielectric tensor components foreO at the droplet bordefsee Fig. 1 we setr=R in Eq.

the bipolar configuration depend on batland 6, we cannot . . . L
solve qu.(3.7) bgy separatinpg variables as we did in Sec.(4‘10)’ and insert this into Eq4.3). We find thatqg is given

IV A. However, it is well known that a first order partial

equation of two independent variables can be transformed Jer
into an equivalent set of four first order ordinary differential Qo= €, Cogfo+ ap) . (4.1))
equations, by using Charpit's equatiofs?], which are a V(e e, )cOS(Oy+ ag) + SirP( Oy + arg)

generalization of the Hamilton’s equatioftss]. This yields
Becausd, anda, range from 0 tor and from— 7/2 to /2,

€€ ﬂ: pe,+ €ro qR 4.6 respectively, this expression shows that the valueg,aire

R dw Tor ' ' in the interval defined byg|< e, . It is important to point

out that forq+ 0, Eq.(4.10 diverges at?¢,, — g°R?=0, and

€€ do €00 the ray trajectory does not exist for smaller valuexad,, .

R " gw Peet AR (4.7
) dg €, (r/R—1) 0.87
€I€L AW~ [Sir? 6+ (r/R—1)2 cog 672
2R2\  2pgR 0.4
X i sin 20( p?— q—rr)+ prq 1
—_ 1
E ]
=
_ Q 0.0
X[sir? —(r/R—1)? cog 0]], (4.9 T
and 0.4
€ €, €€, r°—g°R? 1
p=— " R+ Ve ey q ). 4.9 084
rey rey 1
L L L L
Herep=R(JW/dr) andg=JdW/6 are known as the radial 08 04 0 (5°6°um) 04 08

and angular ray components. Using the Maxwell relation
R(d6/dr)q=—(dp/3q),, we find, from Eq.(4.9), that FIG. 7. The same as Fig. 6, but fag= /4.
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] and 8, the incidence angles, are larger in increasing order.
0.8-] Notice that the deflected ray trajectories in Fig. 8 converge to
1 a region that lies underneath the equator plane. In contrast,
] Fig. 8 shows rays that are almost straight lines, for which
0.4 their deflection angles are small. This means that just in the
1 case when the incident beams are parallel to the bipolar axis,
] the anomalous-diffraction approach assumed in some previ-
0.0 ous work[9] is reliable.
1 It is interesting to remark that this formalism also pro-
] vides a phase difference associated with each of the ray tra-
0.4+ jectories, since these are parametrizedAsywhich is itself
1 the optical path. With this information is possible to analyze
diffraction patterns.

z (50 pm)

-0.8-
I € L V. CONCLUDING REMARKS
-0.8 -0.4 0.0 0.4 0.8 . .
p (50 um) In summary, we c_alculated an _analytlcal asymptotic and
very simple expression for the bipolar configuration from
FIG. 8. The same as Fig. 7, but fag= /2. Frank's free energy. By applying the limit of geometrical

optics to the TM mode equation in nematic droplets, we
In fact, this equation defines the geometrical place of thalerived the eikonal equation. We found analytical expres-
caustic for a giverg, which can be written explicitly as sions for the optical path, ray trajectory, deflection angle, and
2o o return point for the radial configuration. We showed that an
qcR™—r%€; initially parallel set of incident rays is scattered by a droplet
(r/IR—1)%(er>—q°R?) +q°R>—¢, 12| with the radial configuration, in such a way that there exists
(4.12  adark zone behind the sphere unreachable for almost every
ray. We numerically calculated the ray trajectories for the
Note that a point on this curv@eturn poinj also satisfies bipolar configuration, and showed, for various initially par-
tan a, cot .=—1 which comes from Eq4.3). This expres- allel sets of rays, that the rays are bent in such a way so as to
sion means that at the return point the trajectory slope isonverge in certain regions of the sphere. We hope that this
perpendicular to the corresponding polar radius. work on refractive effects in nematic droplets can be useful
We calculated various sets of ray trajectories for distinctin understanding the propagation of beams in birefringent
initial conditions by solving Egs(4.6—(4.9) numerically, inhomogeneous media, as well as in the design of PDLC
and plotted them. In Figs. 6—8 we plot, for five incident devices.
anglesa between 0 andr/2, various sets of rays which start
frqm the right, which are initially parallel to each other and ACKNOWLEDGMENTS
with equally separated values of tidg sphere border.
Figure 6 shows rays which are initially perpendicular to  The author is indebted to Professor Jack R. Kelly for en-
thez axis (@=0), but are deflected by the droplet in such alightening discussions. This work was supported in part by
way that they converge in a region on the equator. In Figs. The NSF under ALCOM Grant No. BMR89-20147.
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