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Ray propagation in nematic droplets

J. A. Reyes*
Liquid Crystal Institute, Kent State University, Kent, Ohio 44242

~Received 6 October 1997; revised manuscript received 3 February 1998!

We present a model for the propagation of optical beams in a nematic droplet. For a low intensity electro-
magnetic field, we first derive an analytical asymptotic expression for the configuration of a nematic droplet
that satisfies hard-anchoring, bipolar boundary conditions. Then, from Maxwell’s equation, we find the corre-
sponding eikonal equation valid in the limit of geometrical optics. From the latter equation we find the ray
trajectories for the radial and bipolar configurations for various sets of initially parallel rays, and show how
they are deflected by a nematic droplet. We also find the presence of caustics and return points, whose
positions depend on the initial conditions. Finally, we summarize our results.@S1063-651X~98!15605-2#

PACS number~s!: 42.70.Df, 78.20.Fm, 42.79.Kr
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I. INTRODUCTION

Light propagation in birefringent inhomogeneous media
a difficult problem which has been extensively studied in
last years for planar geometries. In fact, for the case o
plane wave and layered media, different procedures h
been used for solving this problem. One of the most wid
utilized methods in liquid crystals is that of Barreman’s@1#
434 matrix formalism which was shown to be equivalent
Maxwell’s equation for linear propagation. Some other a
proaches based on the well known geometrical optics
proximation have been also applied to describe beam pr
gation in planar geometries@2,3#. Electromagnetic mode
have been considered for certain cylindrical geometries
using either numerical procedures@4# or the so called WKB
approximation@5#.

The development of polymer-dispersed liquid cryst
~PDLC’s!, which are dispersions of liquid crystal rich drop
lets in a polymer matrix@6#, has brought about a great deal
interest in the study of light propagation in spherical geo
etries. The size of spherical droplets in these material
usually uniform but can vary between 0.1 and 10mm. The
nematic configuration within droplets depends on surface
choring and elastic constants, and is responsible for the
fractive and birefringent properties of the droplets. It sho
be mentioned that the electro-optic properties of PDLC’s
among the reasons for their potential applicability in diffe
ent devices@7,8#.

There have been some pioneering works@9,10# devoted to
analyzing light scattering from a nematic droplet. Tw
complementary physical limits were considered in the
works, namely, the Rayleigh-Gans approximation and
anomalous-diffraction approach, which assume, respectiv
a much smaller and much larger droplet radius than
wavelength of the light; also, both of these suppose a sm
dielectric anisotropy. For the latter work, these assumpti
allowed the author to consider the light as a ray which d
not change its direction but only suffers a change of pha
that is to say, the refractive effects which stem from the lo
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changes of the refraction index induced by the nematic c
figuration are completely neglected. These refractive effe
are expected to be important in birefringent and inhomo
neous media like liquid crystals even for moderate dielec
anisotropy values, and are able to curve the trajectory of li
beams as well as induce local changes of phase instea
global changes, which can develop in richer diffraction p
terns.

The purpose of this paper is to study this refractive eff
by analyzing the dynamics of transverse modes which pro
gate in a nematic droplet, in the limit of geometrical optic
More specifically, we shall calculate and analyze the ray
jectories for both the radial and bipolar configurations,
well as some other physical parameters involved.

To this end this paper is organized as follows. In Sec
we deduce, from Frank’s energy density, an asymptotic a
lytical expression for the bipolar configuration. In Sec. III w
derive the eikonal equation in a nematic droplet from Ma
well’s equation, in the limit of geometrical optics. In Sec. I
we calculate the ray trajectories for the radial and bipo
configurations by using analytical and numerical procedu
Finally, Sec. V is devoted to summarizing our work a
presenting our results.

II. BIPOLAR CONFIGURATION

We consider a spherical nematic droplet of radiusR
which satisfies the hard-anchoring bipolar boundary con
tions @11# ~see Fig. 1!. We will consider a coordinate system
whose origin is at the center of the droplet, and for which
bipolar axis is parallel to thez axis. Then, ifu is the polar
angle of the spherical coordinates andn̂ is the nematic direc-
tor, the bipolar boundary condition is given byn̂(r 5R,u)
5êu , whereêu is the unit vector in the direction of increas
ing u. One may express the director in terms of the anglec,
measured fromêu and contained in the plane defined by th
vector andêr , whereêr is the unit vector in the direction o
increasingr ; that is,

n̂5sin c~r ,u!êr1cosc~r ,u!êu , ~2.1!

where we have used the azimuth symmetry of this nem
configuration. Note that the boundary condition given by E
~2.1! imposes onc the conditionc(r 5R,u)50.
6700 © 1998 The American Physical Society
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57 6701RAY PROPAGATION IN NEMATIC DROPLETS
A nematic liquid crystal confined to a small spherical vo
ume, where the surface-to-volume ratio is relatively hig
exhibits a specific nematic configuration resulting from t
elastic forces. For droplets whose radiiR are larger thanR
.100 nm, surface-induced changes in the nematic order
rameter can be neglected@12#, and thus the nematic directo
n̂ can be determined by minimizing Frank’s free energy, t
in the equal elastic constant approximationK[K15K3 can
be written@13#

F5~RK/2!E
V
du df dt sin uetF S ]c

]t D 2

1S ]c

]u D 2

13 sin2 c

111cot2 u cos2 c1sin 2c
]c

]t
22~sin2 c11!

]c

]u

12
]c

]t
cot u cos2 c12 sin 2c cot u

2sin 2c cot u
]c

]u G , ~2.2!

whereV is the droplet volume andt5 ln(r/R). Thus the con-
figuration equation is obtained by calculating the variatio
derivative of Eq.~2.2! with respect toc, leading to

]2c

]t2 1
]2c

]u2 1
]c

]t
1cot u

]c

]u
2sin 2c1

sin 2c

2 sin2 u

2cot u cos 2c2cot u50. ~2.3!

Now we look for a solution for Eq.~2.3! of the form tanc
5k(t)cotu, wherek(t) is an arbitrary function oft which
satisfies the boundary conditionsk(t51)50 and k(t5
2`)521. Here the first condition comes fromc(r 5R)
50, and the second one guarantees the continuity ofc at the
center. The reasons for choosing this kind of solution
first, n̂(u50,p,p/2)52 k̂ for any k(t), wherek̂ is the unit
vector along thez axis. This means thatn̂ is parallel to2 k̂

FIG. 1. Diagram of a nematic droplet where the nematic direc
and the transverse magnetic modes are shown.
,
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along the z axis (u50,p) and on the equator plane (u
5p/2), which is the expected behavior for this configur
tion. Second, it can be shown that this expression descr
asymptotically the solution of Eq.~2.3! near its poles. Sub-
stitution of tanc5k(t)cotu into Eq. ~2.3!, yields

d2k

dt2
1

dk

dt
1

22kS dk

dt D
2

cos2 u12k~12k2!

sin2 u1k2 cos2 u
22k2250.

~2.4!

In general, Eq.~2.4! is not consistent becausek depends only
on t; hence we integrate Eq.~2.4! with respect tou from 0 to
p; this leads to

r 2
d2k

dr2 12r
dk

dr
12r 2

S dk

dr D
2

12k
22~k11!~22k!50.

~2.5!

By using the shooting method, we numerically calculate
solution of Eq.~2.5!, for a 50-mm droplet, that satisfies the
corresponding boundary conditions; this is shown in Fig.
In order to provide a simple analytical expression for t
configuration, that will be useful in the following section
we shall approximatek(r )'r /R21. Hencen̂ can be ob-
tained by inserting tanc5(r/R21)cotu into Eq. ~2.1!; we
arrive at

n̂5
zrêr1~r22Az21r2!k̂

Ar2~Az21r221!21z2
, ~2.6!

r

FIG. 2. Numerical solution of Eq.~2! satisfying boundary con-
ditions k(r 5R550mm)50 and k(r 50)521 k(r ) is a dimen-
sionless~dmls! function defined in Sec. II.
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6702 57J. A. REYES
wherez5r cosu and r5r sinu are the cylindrical coordi-
nates, andêr is the unit vector in the increasing direction
r. To show this nematic’s configuration graphically, we d
fine the director lines in the following way:

dr

dz
5

nr

nz
5

zr

r22Az21r2
. ~2.7!

Thusn̂ is parallel to the curve which passes through the po
wheren̂ is to be calculated. Figure 3 plots some of the curv
given by Eq.~2.7!, which are drawn equally separated at t
equator plane (z50).

III. GEOMETRICAL OPTICS

We shall restrict our analysis to consider electromagn

fields, EW andHW whosez component of angular momentum

l̂ z5 i\d/df vanishes, that is,l̂ zEW5 l̂ zEW50. This means physi-
cally that the wave vector associated with these fields lie
the plane generated byêr and êu . The propagation of thes
waves within a nematic droplet can be described in term
the representation provided by the corresponding TM and
modes, which have the componentsHf , Er , andEu andEf ,
Hr , andHu , respectively. Notice that for both the radial an
bipolar configuration, which can be expressed by Eq.~2.1!,
the TE modes are not coupled tou because their only electri
component is parallel toêf . As a result, they cannot induc
a torque onn̂. Thus in the rest of this section we shall igno
them. The monochromatic TM modes for our system
given by

Hf~r ,u,t !5eivtHf~r ,u,k0! ~3.1!

and

Er ,z~r ,u,t !5eivtEr ,z~r ,u,k0!, ~3.2!

FIG. 3. Director lines for various equally separated initial co
dition at the equator plane.
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whereEu(r ,u,k0), Er(r ,u,k0), andHf(r ,u,k0) are the TM
amplitudes,k05v/c is the free space wave number, andm is
an integer number. Herev is the frequency of the field andc
the speed of light in vacuum.

Using Maxwell’s equations without sources to descri
the optical field within the liquid crystal, we arrived at th
following general set of equations for the amplitudes of t
TM modes (x[r /R):

1

x

]

]x S e rr

]

]x
~xHf!1

e ru

sin u

]

]u
~sin uHf! D

1
1

x2

]

]u S e ru

]

]x
~xHf!1

euu

sin u

]

]u
~sin uHf! D

1e'e ik0
2R2Hf50, ~3.3!

Er52
i

e'e ik0Rx H euu

sin u

]

]u
~sin uHf!1e ru

]

]x
~xHf!J ,

~3.4!

Eu5
i

e'e ik0Rx H e ru

sin u

]

]u
~sin uHf!1e rr

]

]x
~xHf!J ,

~3.5!

and wheree i ande' denote, respectively, the dielectric co
stants parallel and perpendicular to the long axis of the m
ecules.ea5e i2e' is the dielectric anisotropy of the nemat
and the components of the dielectric tensor;e i j 5e'd i j
1eaninj are explicit functions ofu andx, namely,e rr 5e'

1ea sin2 c(x,u); euu5e'1ea cos2 c(x,u); and e ru5eur
5ea sinc(x,u)cosc(x,u).

We can approximate Eqs.~3.3!–~3.5! by supposing a low
intensity incident beam whose optical wavelength is mu
smaller than the droplet radius, so that 1/k0R!1. The former
condition guarantees thatc is not distorted by the electro
magnetic field, and the latter condition defines the w
known limit of geometrical optics@14#. Following the usual
procedure in geometrical optics@15#, we assume the follow-
ing form for the TM mode components:

Hf~x,u,k0!5H0f exp@ i ~k0RW~x,u!2vt !# ~3.6!

Here W(x,u) is the characteristic function of Hamilton
which is equal to the difference in optical paths of a r
propagating between two fixed point in the droplet. The a
plitudesH0f and E0 j are general complex functions of th
position. Substitution of Eq.~3.6! into Eq. ~3.3!, by keeping
terms up to order zero in 1/k0R, leads to

e rr S ]W

]x D 2

12
e ru

x S ]W

]u D S ]W

]x D1
euu

x2 S ]W

]u D 2

5e'e i .

~3.7!

This equation is the so-called eikonal or Hamilton-Jac
equation.

IV. RAY TRAJECTORIES

We will study the ray propagation for the radial and t
bipolar nematic droplet configurations by using the T
mode formalism developed in Sec. III.

-
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57 6703RAY PROPAGATION IN NEMATIC DROPLETS
A. Radial configuration

The radial configuration can be represented by Eq.~2.1! if
taking c5p/2; hence for this configuration Eq.~3.7! does
not depend explicitly onu, so that we can separate this va
able by using the canonical transformationW5P(x)2q0u,
whereP(x) is a function which depends only onx, andq0 is
the angular momentum which is conserved. ThusW is given
by

W52q0u1Fe'S x22
q0

2

e i
D G1/2

1q0S e i

e'
D 1/2

arccosF q0

xAe i
G1P0, ~4.1!

where P0 is an integration constant. According to th
Hamilton-Jacobi theory, the ray trajectory is given byg
5]W(x,u,q0)/]q0 , whereg is the variable conjugated t
q0 , which is invariant in time; that is, an initial condition o
constant of motion. It leads to

r 5
q0R/Ae i

cos@Ae i /e'~u2g!#
. ~4.2!

Now, bothq0 andg can be expressed in terms of the initi
u0 and incidencea0 angles at the sphere border:r 5R550
mm ~see Fig. 1!. We use the following general relation
which can be derived from the coordinate transformatioz
5r cosu andr5r sinu:

tana5

cosu2r
du

dr
sin u

sin u1r
du

dr
cosu

, ~4.3!

where tana05dz/dr. Then, substitutingu from Eq.~4.2! into
Eq. ~4.3! by takingx51, leads to

q05
Ae i cos~a01u0!

A~e' /e i!sin2~a01u0!1cos2~u01a0!
~4.4!

and

g5u02S e'

e i
D 1/2

arccosF q0

Ae i
G . ~4.5!

Some optical quantities can be calculated from Eq.~4.2!.
First, the return point of the trajectory is obtained by sett
u5g, becauser reaches its minimum valuer r5q0(u0

1a0)R/Ae'. Note that r r50 at normal incidenceb5u0
1a02p/250, and r r→1 when b5p/2 tends top/2, as
should be expected. Second, sinceW is itself the optical path
of the trajectory, we directly obtain the change of phase
the ray D f 5@W(r 5R)2W(r 5r r)#/2p in crossing the
whole droplet, by substitutingu from Eq.~4.2! into Eq.~4.1!;
we arrive at D f 5(Ae'/p)cosb/Acos2 b1(ei /e')sin2 b.
Note that forb50, DW has its maximum value, and this
the same as in an isotropic medium, which means that
g

f

e

ray propagates in a straight line at normal incidence andDW
tends to 0 whenb→p/2, as should be expected.

The form of the trajectories can be inferred from E
~4.2!. Notice that all the trajectories are symmetric with r
spect to the angleg, thus the angleus over the sphere surfac
at which the ray comes out is given by the conditionus2g
52(u02g), and thenus2u052(g2u0). In fact, from Eq.
~4.5!, we note that the maximum and minimum angles
lowed for us areu06Ae' /e ip/2. Thus, besides the norma
incident ray whose ray trajectory is a straight line th
crosses the center, as was shown above, every ray ca
reach a dark zone delimited by the anglep(12Ae' /e i)
which lies behind the droplet. That is to say, there is a de
cusing effect that makes the droplet behave as a diver
lens.

In Fig. 4, we plot rays which start from the right, ar
initially parallel to each other, and are equally separated o
the sphere border; for the incident angles,a050. Here we
are considering a 50-mm nematic droplet for whiche'

52.25 ande i52.89. This figure shows how the rays diverg
from the equator plane in such a way that the rays neare
the equator are bent more than the rays which lie furt
from it. The same behavior is expected for any value oa
because of the symmetry of the configuration. In Fig. 5,
plot a set of rays with the sameu0 and various values ofa;
this graph shows clearly the presence of the dark zone
duced by the droplet.

We should mention that if we want to follow a plan
wave which comes from outside the droplet, we have to t
into account the change of direction of the rays given by
Snell law at the interface droplet host. Roughly speaking,
effect of this border refraction is to add an initial diverge
deflection angle to each ray, so that the dark zone mentio
above still would be present, but enhanced because the
are to be even more scattered.

It is important to remark that because of the symmetry
the configuration, for any incident ray, it is always possib

FIG. 4. Ray trajectories, for the radial configuration, starti
from the right, initially parallel to each other and with equally sep
rated values ofu0 , namely,u056p/8, 6p/4, ... and6p/2; for
the incident anglea050. We use a typical nematic cyanobiphen
for which e'52.25 ande i52.89.
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6704 57J. A. REYES
to find a reference coordinate for which thez component of
the angular momentuml̂ z5 i\d/df vanishes. In this sense
the results for this configuration are quite general.

B. Bipolar configuration

Due to the fact that the dielectric tensor components
the bipolar configuration depend on bothr andu, we cannot
solve Eq. ~3.7! by separating variables as we did in Se
IV A. However, it is well known that a first order partia
equation of two independent variables can be transform
into an equivalent set of four first order ordinary different
equations, by using Charpit’s equations@17#, which are a
generalization of the Hamilton’s equations@16#. This yields

e ie'

R

dr

dW
5pe rr 1

e ru

r
qR, ~4.6!

e ie'

R
r

du

dW
5pe ru1

euu

r
qR, ~4.7!

2e ie'

dq

dW
5

ea~r /R21!

@sin2 u1~r /R21!2 cos2 u#2

3H sin 2uS p22
q2R2

r 2 D1
2pqR

r

3@sin2 u2~r /R21!2 cos2 u#J , ~4.8!

and

p52
e ru

r e rr
qR1

Ae'e i~e rr r
22q2R2!

r e rr
. ~4.9!

Herep5R(]W/]r ) andq5]W/]u are known as the radia
and angular ray components. Using the Maxwell relat
R(]u/]r )q52(]p/]q) r , we find, from Eq.~4.9!, that

FIG. 5. Ray trajectories, for the same configuration and s
stance as Fig. 4, starting from the same pointu0 for various equally
separated values ofa0 , namely,a5, 0, 6p/20, 6p/10, ..., and
69p/20.
r

.

d
l

n

r
du

dr
5

qRAe'e i

e rrAr 2e rr 2q2R2
1

e ru

e rr

. ~4.10!

To expressq0 , the initial condition forq, in terms ofa0 and
u0 at the droplet border~see Fig. 1!, we setr 5R in Eq.
~4.10!, and insert this into Eq.~4.3!. We find thatq0 is given
by

q05
Ae' cos~u01a0!

A~e i /e'!cos2~u01a0!1sin2~u01a0!
. ~4.11!

Becauseu0 anda0 range from 0 top and from2p/2 top/2,
respectively, this expression shows that the values ofq0 are
in the interval defined byuqu<Ae'. It is important to point
out that forqÞ0, Eq.~4.10! diverges atr 2e rr 2q2R250, and
the ray trajectory does not exist for smaller values ofx2e rr .

FIG. 6. Ray trajectories for the bipolar configuration starti
from the right, initially parallel to each other and with equally sep
rated values ofu0 , namely,u056p/8, 6p/4, ..., and6p/2; for
the incident anglea050. We use the same substance values as
4.

FIG. 7. The same as Fig. 6, but fora05p/4.

-



th

nc

nt
rt
d

to
a

s.

.
to

rast,
ich
the
xis,
evi-

o-
tra-

ze

nd
m
al
we
es-
nd
an
let
sts
very
he
r-
s to
this
ful
ent
LC

n-
by

57 6705RAY PROPAGATION IN NEMATIC DROPLETS
In fact, this equation defines the geometrical place of
caustic for a givenqc which can be written explicitly as

cosu5S qc
2R22r 2e'

~r /R21!2~e ir 22qc
2R2!1qc

2R22e'r 2D 1/2

.

~4.12!

Note that a point on this curve~return point! also satisfies
tanac cotuc521 which comes from Eq.~4.3!. This expres-
sion means that at the return point the trajectory slope
perpendicular to the corresponding polar radius.

We calculated various sets of ray trajectories for disti
initial conditions by solving Eqs.~4.6!–~4.9! numerically,
and plotted them. In Figs. 6–8 we plot, for five incide
anglesa0 between 0 andp/2, various sets of rays which sta
from the right, which are initially parallel to each other an
with equally separated values of theu0 sphere border.

Figure 6 shows rays which are initially perpendicular
the z axis (a50), but are deflected by the droplet in such
way that they converge in a region on the equator. In Fig

FIG. 8. The same as Fig. 7, but fora05p/2.
.

.

s

e

is

t

7

and 8, the incidence anglesa0 are larger in increasing order
Notice that the deflected ray trajectories in Fig. 8 converge
a region that lies underneath the equator plane. In cont
Fig. 8 shows rays that are almost straight lines, for wh
their deflection angles are small. This means that just in
case when the incident beams are parallel to the bipolar a
the anomalous-diffraction approach assumed in some pr
ous work@9# is reliable.

It is interesting to remark that this formalism also pr
vides a phase difference associated with each of the ray
jectories, since these are parametrized byW, which is itself
the optical path. With this information is possible to analy
diffraction patterns.

V. CONCLUDING REMARKS

In summary, we calculated an analytical asymptotic a
very simple expression for the bipolar configuration fro
Frank’s free energy. By applying the limit of geometric
optics to the TM mode equation in nematic droplets,
derived the eikonal equation. We found analytical expr
sions for the optical path, ray trajectory, deflection angle, a
return point for the radial configuration. We showed that
initially parallel set of incident rays is scattered by a drop
with the radial configuration, in such a way that there exi
a dark zone behind the sphere unreachable for almost e
ray. We numerically calculated the ray trajectories for t
bipolar configuration, and showed, for various initially pa
allel sets of rays, that the rays are bent in such a way so a
converge in certain regions of the sphere. We hope that
work on refractive effects in nematic droplets can be use
in understanding the propagation of beams in birefring
inhomogeneous media, as well as in the design of PD
devices.
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